Numerical inversion of probability generating functions

نویسندگان

  • Joseph Abate
  • Ward Whitt
چکیده

Random quanti t ies of interest in operations research models can often be determined conveniently in the form of transforms. Hence, numerical t ransform inversion can be an effective way to obtain desired numerical values of cumulative distribution functions, probability density functions and probability mass functions. However, numerical transform inversion has not been widely used. This lack of use seems to be due, at least in part, to good simple numerical inversion algorithms not being well known. To help remedy this situation, in this paper we present a version of the Fourier-series method for numerically inverting probability generat ing functions. We obtain a simple algorithm with a convenient error bound from the discrete Poisson summation formula. The same general approach applies to other transforms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of Autocorrelations of Interdeparture Times by Numerical Transform Inversion

The generating functions of the autocorrelations of the interdeparture times in a stationary M/G/1 system and in a stationary GI/M/1 system involve the probability generating functions of the number of customers served in a busy period. The latter functions are only implicitly determined as solutions to some functional equations. Standard methods for the numerical inversion of generating functi...

متن کامل

Fast Generation of Deviates for Order Statistics by an Exact Method

We propose an exact method for generating random deviates from continuous order statistics. This versatile method that generates Beta deviates as a middle step can be applied to any density function without resorting to numerical inversion. We also conduct an exhaustive investigation to document the merits of our method in generating deviates from any Beta distribution.

متن کامل

Probabilistic Scaling for the Numerical Inversion of Nonprobability Transforms

It is known that probability density functions and probability mass functions can usually be calculated quite easily by numerically inverting their transforms (Laplace transforms and generating functions, respectively) with the Fourier-series method, but other more general functions can be substantially more difficult to invert, because the aliasing and roundoff errors tend to be more difficult...

متن کامل

MODELLING AND ANALYSIS OF A DISCRETE-TIME PRIORITY QUEUING COMPUTER NETWORK WITH PRIORITY JUMPS USING PROBABILITY GENERATING FUNCTIONS

Priority queues have a great importance in the study of computer communication networks in which different types of traffic require different quality of service standards. The discrete-time non-preemptive priority queuing model with priority jumps is proposed in this paper. On the basis of probability generating functions mean system contents and mean queuing delay characteristics are obtained....

متن کامل

Probability Generating Functions for Sattolo’s Algorithm

In 1986 S. Sattolo introduced a simple algorithm for uniform random generation of cyclic permutations on a fixed number of symbols. Recently, H. Prodinger analysed two important random variables associated with the algorithm, and found their mean and variance. H. Mahmoud extended Prodinger’s analysis by finding limit laws for the same two random variables.The present article, starting from the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991